Offshore Wind

In 2007 the UK had around 0.4 GW of offshore wind capacity, and at the end of 2010, 1.3 GW. All of these were fixed to the seabed by solid foundations, with no floating offshore turbines yet present in the UK.

Level 1
Level 1 assumes that only the current turbines and those already advanced in the planning process are built. Offshore wind capacity initially rises from 1 GW to 8 GW in 2025 then reduces to zero by 2045 as decommissioned sites are not replanted. 8 GW is equivalent to around 1400-5.8 MW turbines (although in reality turbines would have different capacities) and generates around 29 TWh/y at 2025.

Level 2
Level 2 assumes that capacity increases to 60 GW by 2040 and is then maintained. This means building and maintaining about 10 000 of the 5.8-MW turbines in total. In this scenario the sea area occupied by wind farms is about 10 800 km², about half the area of Wales. It requires maintaining the same build rate that Germany achieved for onshore turbines from 2000 to 2010 over a 20-year period in the UK and in an offshore environment. 60 GW of offshore wind turbines generates around 237 TWh/y in 2050.

Level 3
Level 3 assumes that capacity rises to 45 GW by 2025, and to 100 GW by 2050, which is equivalent to around 17 000 5.8-MW turbines. The sustained installation rate is 5 GW per year. Installing 5 GW per year might require roughly 30 jack-up barges and means building offshore wind turbines at a rate never before achieved in any country. The sea area occupied by wind farms is 18 000 km², close to the area of Wales. The combined weight of steel and concrete in these turbines is roughly 0.4 tonnes for every Briton. 60 GW of offshore wind turbines generates around 395 TWh/y in 2050.

Level 4
Level 4 assumes that capacity rises to 68 GW by 2025, and to 236 GW by 2050 – a 180-fold increase from 2010. The sustained installation rate required is 6 GW per year of fixed turbines (which requires roughly 30 jack-up barges) plus 6 GW/y of floating turbines. In total, this is equivalent to about 40 000 5.8-MW turbines being built by 2050. The costs of offshore wind installation and maintenance increase with the distance from shore and water depth. For level 4, the sea area occupied by wind farms is over 42 000 km², roughly twice the area of Wales, including both fixed and floating turbines. If 236 GW of the 5.8 MW turbines were arranged uniformly along 3400 km of coastline, there would be 12 of them per kilometre, generating around 929 TWh/y in 2050. The combined weight of steel and concrete in these turbines is 0.9 tonnes for every Briton.

Figure 1. UK offshore wind capacity versus time, historic (to 2010) and assumptions (from 2010 onwards), compared with onshore wind in Spain, Germany, EU, and world totals.